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Introduction

It is like listening to a stewardess in a jet airliner
who is explaining the safety measures: you have
heard 1000 times before that the human genome
has been sequenced and that a flood of data is
coming over us. The question is how the mas-
sively parallel measurements of large numbers of
genes, messenger RNAs, proteins and metabolites
are going to help us in prognosis and diagnosis
of common human diseases. Is it a manageable
problem to explain the behaviour of thousands of
biomolecules from our knowledge of the molecular
interactions in the cells of the human body? Can
we infer from the large molecular datasets how the
molecular pathways are organized and interact?

It has been argued that the life sciences are devel-
oping into a discovery- and data-driven science,
with less emphasis on the hypothesis-driven experi-
mental cycle. However, reasoning from experimen-
tally determined facts to a well-founded theory of
the underlying system is problematic. In his book
on the structure of scientific revolutions, Kuhn [2]
wrote, ‘But though this sort of fact-collecting has
been essential to the origin of many significant sci-
ences, anyone . . . will discover that it produces

a morass’. Is data mining in integrated exper-
imental databases containing large quantities of
genomic and systems biology data going to produce
a morass, or is this approach useful for generating
hypotheses and theories which, after corroboration,
lead to valid knowledge?

Medical systems biology

Such questions are particularly important for med-
ical systems biology. Systems biology may be
defined as the study of the interactions of the large
numbers of molecules (DNA, mRNAs, proteins,
metabolites) that form the biological system. Sys-
tems biology combines high-density measurement
methods, such as DNA chips and proteomics, with
computational analysis.

The Centre for Medical Systems Biology
(CMSB) in The Netherlands was opened on 1 July
2003. The CMSB is funded in the framework of
a 5 year stimulation programme for genomics by
the government and implemented by the Nether-
lands Genomics Initiative [4]. In the CMSB several
medical centres (Leiden University Medical Cen-
tre, Vrije Universiteit Medical Centre, and Erasmus
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Medical Centre) collaborate with the Vrije Univer-
siteit Amsterdam, Leiden University and the TNO
Prevention and Health Research Institute, under the
director Gertjan van Ommen [1].

At the CMSB, genomics and systems biology are
used for identifying hidden connections between
common diseases, such as Alzheimer’s, depres-
sion, migraine, metabolic syndrome, vascular dis-
ease, thrombosis, arthritis, cancer and infectious
diseases. Such connections between common dis-
eases reflect underlying common biological path-
ways and may become manifest in the form of
co-morbidity. Besides systems biology, another key
approach in the CMSB is epidemiology, for which
large population and patient groups, tissue sample
and data collections are available.

The CMSB’s systems biology research strategy
is to combine measurements at several biomolec-
ular levels (genes, gene expression, proteins and
metabolites). The CMSB’s working hypothesis is
that interconnected changes at these vertical levels
provide sensitive signatures of pathology that can
be of early prognostic and diagnostic value. An
even bigger challenge is to understand the mea-
sured changes in thousands of molecules simulta-
neously in terms of the processes inside the cell.
Understanding and controlling the causal relations
in the networks of intracellular signalling, tran-
scriptional regulation and metabolism, among oth-
ers, is important for understanding and influencing
the progress of disease. Therapeutic interventions
can then be aimed at strategically important points
in the system. This goes beyond a single molecu-
lar target approach and increases the efficiency of
intervention.

DIAL (Data Integration, Analysis and
Logistics)

The integration of high-density data in such a med-
ical genomics and systems biology centre requires
extensive use of computer-based approaches: inte-
gration of databases; statistical analysis of correla-
tions amongst molecular signatures and pathology;
data mining to generate hypotheses by induction;
and computational analysis of pathways by relat-
ing newly measured data to external molecular and
pathway databases. Therefore, the CMSB estab-
lished a central project for data integration, analysis
and logistics, termed DIAL.

To define interrelationships between phenotype,
genotype and the intermediate biomolecular lev-
els, linking population-based and patient-based
cohort databases containing data on pathology with
databases of molecular laboratory measurements
(e.g. SNPs, microarrays) is a first requirement
that is addressed. Further, there is a need to link
the CMSB’s new experimental data to external
databases containing prior biological knowledge
(gene annotations, pathways, etc.) to help in the
interpretation of the data. Given the high data vol-
ume, the CMSB’s scientists should be supported
by artificial intelligence, text mining and efficient
links between databases.

A fundamental question in the background is:
how can valuable biological hypotheses be derived
by induction from such large amounts of experi-
mental data, avoiding Kuhn’s morass? The induc-
tive process during data mining should help to
construct valuable hypotheses without creating a
swamp of distracting findings reflecting noise in
the data or artefacts of the data mining method.

Knowledge by induction and data mining

At present, some life scientists seem to think that
if huge masses of data are correctly stored in
database systems, properly integrated and anal-
ysed, comprehensive and valid biological knowl-
edge will emerge. This is expressed by terms
such as ‘discovery-driven science’, as opposed to
‘hypothesis-driven research’.

In the seventeenth century, Sir Francis Bacon
[8] thought that if all known facts are systemat-
ically ordered, a theory of the underlying system
could be derived and verified by induction. David
Hume, and later Karl Popper, argued that this strat-
egy for arriving at scientific knowledge was erro-
neous. True progress in science comes about by
posing a hypothesis based on existing incomplete
knowledge and testing the hypothesis by trying to
falsify it in carefully designed experiments which
yield new data to fill in gaps [3,6]. If the hypothe-
sis could not be falsified, then the hypothesis was
considered corroborated. Definitive logical proof
of the correctness of a hypothesis was unattain-
able. However, the continuing cycle of testing of
progressively refined hypotheses reflects the true
nature of scientific progress, in Popper’s view.
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Given the existence of database technology for
establishing and coupling large databases, many
scientists now seem to expect a lot from detecting
meaningful relations in the databases by computer
methods. Clustering of groups of genes with similar
gene expression patterns across multiple experi-
ments is an example. However, such correlations
should lead to new hypotheses and theories on
the organization of the underlying biological sys-
tem, which still require corroboration. Although the
data-driven part of the research is very useful, the
hypothesis-driven part must follow to lead to valid
knowledge.

The term ‘data mining’ suggests that lots of
rubble and rock without value will be dug up
along with precious metal. Figuratively speaking,
ways of separating shining nuggets of gold from
the stone in which they are buried are then a
prerequisite for a profitable process. If thousands
of molecular changes occur, many correlations
are expected based on random fluctuations. Data
mining thus supports the inductive part of the
scientific process: correlations are found, but it has
yet to be determined whether relations are causal.

This fundamental difficulty is at present com-
pounded by the practical problem that the higher
density of data often seems to come with lower
precision and accuracy. It required great care to
obtain ‘old-fashioned’ low-density laboratory mea-
surements, such as biochemical assays. If we per-
form hypothesis-driven research, a lot of attention
is directed to those measurements that are critical
for testing the hypothesis. If such a focus on a lim-
ited dataset is lacking, special attention is required
for data reliability during mass production of high-
throughput data. As is true for the mass production
of goods, quality control becomes a necessary step.

In the worst case, analysis of large, hetero-
geneous, and to some extent unreliable, datasets
might produce a much too large proportion of
spurious correlations to be helpful. In the ideal
case, with accurate high-throughput measurements
recorded error-free in databases, the experimental
work goes forward at tremendous speed, but the
question is raised whether data interpretation and
understanding can keep up with this. Hypotheses
are easy to generate, and proliferate even faster
than the data needed to critically examine them,
as Robert Pirsig eloquently explained in his novel
[5]. Indeed, at a recent genomics meeting, Holstege
identified the challenge that in genomics the rate of

generation of hypotheses is faster than the rate of
verification [9]. Thus, the trouble with data analysis
of high-throughput data might become that many
more hypotheses can be derived from patterns in
the data than can be critically examined.

Bottom-up and top-down data mining

Analysis of large integrated databases of experi-
mental data is going to be an inevitable develop-
ment. To think of an analogy: while explorations
of the earth were done in past centuries by ship,
perhaps based on hypotheses of some kind (‘if we
go west, we will find a new route to India’), it is
definitely not necessary to pose a hypothesis before
starting to chart the earth with sensors and imaging
equipment using satellites in orbit. However, it is
not yet entirely clear how we can circumvent the
limitations of the inductive mode of data mining in
biomedical databases and follow this up with the
necessary critical testing of the hypotheses that are
generated. It becomes necessary to analyse the inte-
grated databases, not only with inductive methods
but also to test hypotheses at a high rate. The inte-
gration of inductive and deductive reasoning for
data mining has been described in the context of
financial and commercial data [7]. The inductive
pattern discovery part is termed ‘bottom-up data
mining’, the hypothesis-testing part was termed
‘top-down data mining’.

A relevant philosophical question is whether, if
the high-density molecular measurements cover a
critical fraction of all the molecules in the sys-
tem under study, the inductive method can to some
extent replace the cycle of hypothesis falsification
and formulation of improved hypotheses. Given the
large number of molecules present in biological
systems, it will be very difficult to keep track of the
hypotheses necessary to cover so many molecular
measurements. If we were to include all the molec-
ular details, the comprehensive hypothesis would
most likely be wrong in at least some of the details.

When searching on the World Wide Web it is
not difficult to find statements such as ‘Biology
is data-driven science’. However, if the next step
of critically investigating hypotheses is neglected,
biology may become Kuhn’s morass. Thus, the
development of top-down data mining, i.e. hypoth-
esis testing, for the analysis of high density biolog-
ical data is important.
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Not the trees, but the forest

With regard to the multiple hypothesis testing
problem, where a large number of false positive
answers arise when a huge number of tests is
performed simultaneously, there may be various
answers. Some degree of coarse graining may be
helpful for some questions. The measurement of
the level of a single molecule often does not yield
the answer, because it is an interconnected parallel
change in many molecules belonging to a pathway.
When correlated changes between two molecules
appear while testing many possible combinations
of molecules, this may be due to random fluctua-
tions, but when many molecules belonging to the
same pathway change in a certain direction this
provides a more reliable signature of a meaningful
change in the system. Therefore, at the CMSB such
interconnected changes will be used for prognosis,
diagnosis and classification of disease.

Alternatively, one can concentrate on large cor-
relations or changes whose magnitude is such that
on statistical grounds less than one instance of at
least that likelihood is found in the total integrated
dataset under the null hypothesis, i.e. without a real
underlying change or relation. This is analogous to
using small E-values for selecting sequence align-
ments from a BLAST search. For large datasets this
is a much more stringent criterion than the common
criteria for significance (traditionally p < 0.05 or
<0.01). However, the E-value has great practical
value: if there is one true relation in the dataset
and the ‘E-value’ used is 10, the ratio of true to
false positives is 1 to 10. The task of weeding out
the false positives becomes uncomfortably large at
high ‘E-values’.

To analyse the data, it is particularly worth-
while to investigate how much of the measured
changes can be predicted from reliable prior bio-
logical knowledge, preferably formalized in a com-
putational model. If debatable assumptions have to
be introduced into the model to explain measured
data, these constitute new hypotheses to be tested
with new results. Critical re-examination of mea-
sured data is sometimes also indicated and helps
in data quality control. It will be a big challenge

for the future to build a reliable model for sizable
parts of the whole biomolecular system.

Conclusion

Integration of databases containing experimental
data in genomics and systems biology is going
to be an inevitable development. When accurate
high-throughput measurements speed up the exper-
imental part of the scientific discovery cycle, the
interpretation and analysis part of the scientific pro-
cess will become more limiting. Many data-mining
techniques for use on the integrated databases are
inductive in nature and may help the formulation of
hypotheses. However, creative scientific reasoning,
the design of new experiments, and critical testing
of hypotheses, theories and computational models
remain of vital importance now that data collection
is increased in scale.
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